High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross-Pitaevskii equations
نویسندگان
چکیده
The aim of this paper is to build and validate some explicit high-order schemes, both in space and time, for simulating the dynamics of systems of nonlinear Schrödinger/Gross-Pitaevskii equations. The method is based on the combination of high-order IMplicit-EXplicit (IMEX) schemes in time and Fourier pseudo-spectral approximations in space. The resulting IMEXSP schemes are highly accurate, efficient and easy to implement. They are also robust when used in conjunction with an adaptive time stepping strategy and appear as an interesting alternative to time-splitting pseudo-spectral (TSSP) schemes. Finally, a complete numerical study is developed to investigate the properties of the IMEXSP schemes, in comparison with TSSP schemes, for oneand two-components systems of Gross-Pitaevskii equations.
منابع مشابه
Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations
In this work, the issue of favorable numerical methods for the space and time discretization of low-dimensional nonlinear Schrödinger equations is addressed. The objective is to provide a stability and error analysis of high-accuracy discretizations that rely on spectral and splitting methods. As a model problem, the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Ei...
متن کاملA numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equatio...
متن کاملDynamics of Nonlinear Schrödinger /Gross-Pitaevskii Equations; Mass Transfer in Systems with Solitons and Degenerate Neutral Modes
Nonlinear Schrödinger / Gross-Pitaevskii equations play a central role in the understanding of nonlinear optical and macroscopic quantum systems. The large time dynamics of such systems is governed by interactions of the nonlinear ground state manifold, discrete neutral modes (“excited states”) and dispersive radiation. Systems with symmetry, in spatial dimensions larger than one, typically hav...
متن کاملOn the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions
In this paper, we propose some efficient and robust numerical methods to compute the ground states and dynamics of Fractional Schrödinger Equation (FSE) with a rotation term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum (GauSum) solver is used for the nonlocal interaction evaluation [33]. To compute the ground states, we integrate the preconditioned Krylov s...
متن کاملGPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations
GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows [8], is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of GrossPitaevskii equation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 327 شماره
صفحات -
تاریخ انتشار 2016